
Automatic Testing Tool for OSCAR Using System-level Virtualization

Geoffroy Vallée1, Thomas Naughton1, Wesley Bland1,2, and Stephen L. Scott1 ∗

1Oak Ridge National Laboratory
Computer Science and Mathematics Division

Oak Ridge, TN 37831, USA

2Tennessee Technological University
Cookeville, TN 38505, USA

Abstract

To ensure quality, software development has to include
testing mechanisms. OSCAR today supports several Linux
distributions and several architectures. In such a context,
the release cycle suffers of a important overhead created by
the testing and stabilization phase. To address this issue, an
approach is to implement a tool for automatic testing.

This paper presents such a tool which is based on the OS-
CAR command line interface. This tool, based on system-
level virtualization techniques, creates a virtual cluster to
perform the test. This approach has the benefit of not cor-
rupting the system of the physical machine and guarantee
that the environment used for testing has not been corrupted
before testing.

1 Introduction

Software testing is mandatory for the release of quality
software but it is also a difficult tasks especially for soft-
wares targeting distributed systems. For instance, software
such as OSCAR, a suite for the installation and the manage-
ment of clusters which supports several Linux distributions
and several architectures, are difficult to test because of its
distributed nature but also because of the time needed for
each supported Linux distribution/architecture.

Automatic testing is a common usage of software testing.
However, automatic testing for software such as OSCAR
implies implicit requirements: (i) be able to use the software
in non-interactive mode, and (ii) have access to a distributed
platform.

∗ORNL’s work was supported by the U.S. Department of Energy, under
Contract DE-AC05-00OR22725.

It is today possible to use OSCAR in non-interactive
mode thanks to the command line interface. Moreover, the
current OSCAR CLI is menu based which allows one to
create a set of tests that are comparable to a usage via the
Graphical User Interface (GUI), the initial user interface
widely used by users. The OSCAR CLI also allows one
to specify OSCAR inputs via files, enabling duplication of
the cluster installation test.

The use of a real for automatic testing is most of the time
not possible because of the cost that it implies (access to a
cluster is most of the time charged to users and therefore
reserved for application execution). Furthermore, system-
level virtualization are today mature solutions and allow one
to create a virtual cluster.

This document presents a tool for OSCAR automatic
testing using system-level virtualization techniques. A
driver, based on the OSCAR CLI, has been developed to
drive the test without to have to modify OSCAR or the sys-
tem used for testing.

The remainder of the paper includes, an introduction
to system-level virtualization (Section 2) and design (Sec-
tion 4) for the OSCAR CLI. Followed by a description
of the current CLI implementation (Section 5) along with
some comments for future work and concluding remarks
(Section 6).

2 Introduction to System-level Virtualization

System-level virtualization is a pretty old topic of re-
search in operating system. In 1973, Goldberg [4] defined
the first classification of virtualization techniques (see Fig-
ure 1).

Type-I virtualization allows the execution of virtual ma-
chines (VM) directly on top of the hardware. This is done
modifying the typical execution pattern of the operating sys-

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

Figure 1. Classification of Virtualization Tech-
niques

tems on the processor. For instance, on the x86 architecture,
VMs are running in the execution ring 1 instead of 0 [1].
But since the operating system of virtual machines are not
running in a “privileged mode”, an entity has to translate
privileged processor instruction issued by the VMs’ oper-
ating system. This entity is called hypervisor, or Virtual
Machine Monitor (VMM). The VMM is also in charge of
the management of virtual machines and the scheduling of
the existing VMs. The VMM does typically include device
drivers; therefore, for hardware access, the VMM is coupled
to an host OS which provides the driver and also provide an
interface with the hypervisor for users.

Type-II virtualization does not modify the execution pat-
tern of the hosted operating system: the virtual machine is
typically running inside a process of an existing operating
system, named the host OS. The host OS is in charge of
the translation of all hardware access issued by virtual ma-
chines (memory access, disk access, network access).

Emulation is also a common solution. In that case, a
full architecture is emulated on top of the hardware, most
of time, using an approach similar of the type-II virtualiza-
tion (the virtual machine is running within a process of the
host OS). Therefore, simulation is slower than virtualization
techniques described previously especially when the virtual
machines are running directly on top of the hardware.

The goal of this document of not to provide a survey
on virtualization and emulation techniques therefore we use
in this document the generic term of virtualization, without
distinction between virtualization (as defined by Goldberg)
or emulation.

Therefore, even if these solutions have the same goal,
provide a virtual machine, implementation and configura-
tion differ for each of them. A tool has been developed
at ORNL, called Virtual Machine Management (V2M), in
order to provide an abstraction of these virtual machine.
Thanks to this abstraction, users describe a VM using a
high-level XML language; V2M dealing for the configu-
ration and the management of the virtual machine based on
the selected virtualization solution (see Figure 2). It is then

Figure 2. V2M Architecture

very simple to switch from a virtualization solution to an-
other, only the XML description has to be update, V2M
modifying the configuration in order to effectively do the
transition between the two different virtualization solutions.

3 Related Work

[3] presents an automatic testing tool based on
VServer [8]. VServer is a Linux kernel extension that cre-
ates a jail in order to securely partition resources of the host
OS. VServer is widely used for isolation of web servers on
the same physical machine. This automatic testing tool has
several limitations: (i) only VServer can be used, there is no
abstraction of the virtualization solution, (ii) NFS cannot be
used between the virtual headnode and the virtual compute
nodes, (iii) it is not possible to “simulate” a network boot,
this phase of the OSCAR installation cannot be fully tested,
(iv) at the time this tool has been implemented, OSCAR did
not provide a command line interface, therefore the test is
in interactive mode and therefore does not provide a fully
automated solution.

[7] presents the integration of Xen into OSCAR in or-
der to support the creation of virtual clusters based on Xen.
This solution allows users to “emulate” a cluster using Xen
virtual machines, supporting network boot and a full instal-
lation via the OSCAR GUI. However, this solution does
not support other virtualization solution and no drivers are
available to perform the tests.

4 Design

In order to guarantee the validity of the automatic test-
ing, the testing tool has to guarantee that: (i) OSCAR is not
modified, and (ii) the system on within is tested OSCAR is
similar to the typical system used by users want they use
OSCAR. In order to be able to duplicate and rerun tests, we
also need to be able to setup easily a new testing platform.

Virtualization is therefore a good solution for automatic
testing: (i) the host OS is not modified, a driver only

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

need to be implemented for the automatic management of
a virtual cluster, used for the tests; (ii) within the virtual
headnode, OSCAR can be executed without any modifica-
tions, a virtual machine provides exactly the same system
interface than on a physical machine; and (iii) virtual ma-
chines are based on a image it is therefore simple to create
an image template, basic system that is used for the creation
of the virtual cluster, duplicated for every testing, guaran-
teeing a not corrupted system.

4.1 Testing Driver

The testing driver will drive the testing from the host OS.
The driver executes the algorithm listed in Listing 1.

Listing 1. Driver Algorithm
copy_vm_image (image_template);
boot_virtual_headnode ();
checkout_oscar_within_virtual_headnode();
start_oscar_within_virtual_headnode ();
bootup_compute_nodes();
wait_for_node_installation_completion();
finish_oscar_installation();
grab_oscar_logs();
send_logs_to_developers();

4.1.1 Management of the Virtual Machines

The testing driver has to create a virtual cluster. For that,
the driver generates automatically V2M profiles for virtual
machines. These profiles are XML files that describe
a virtual machine. Listing 2 presents a profile example
for a virtual headnode with two networks cards (one
connected with the host OS (TUN/TAP) and another for the
creation of a virtual network used by the virtual cluster),
having 256MB of memory, based on the VM image
/tmp/oscar-testing/oscar-headnode.img,
using QEMU.

Listing 2. Example V2M Profile
<?xml version="1.0"?>
<!DOCTYPE profile PUBLIC ""
"v3m_profile.dtd">

<profile>
<name>oscar-headnode</name>
<type>Qemu</type>
<memory>256</memory>

<nic1>
<type>TUN/TAP</type>
<mac>00:01:02:03:04:05</mac>

</nic1>

<nic2>
<type>VLAN</type>
<mac>00:01:02:03:04:06</mac>

</nic2>
</profile>

Virtual Headnode Management The virtual headnode
has to be based on a Linux distribution supported by OS-
CAR and have to be similar to the typical Linux operating
system used by users before the installation and the use of
OSCAR.

For that, a template image has to be created. This tem-
plate will be copied for the automatic tests, the template
is therefore not corrupted by a previous OSCAR execution
and may be reused. This template provides all software
needed for the use of OSCAR, as well as the binary pack-
age repositories needed by OSCAR (cf. OSCAR documen-
tations for more details [6]).

When the virtual headnode is created, it is very simple to
drive the tests from the host OS using Secure Shell (ssh).

4.1.2 OSCAR Execution Within the Virtual Headnode

There are two broad phases related to the virtual cluster: (i)
deployment of the compute nodes, and (ii) final configura-
tion of the cluster. Before proceeding to the cluster config-
uration stage, all the nodes have to be installed and booted
in order to accept the final configuration commands from
the headnode. The separation of these two steps lead to
the need to monitor the cluster state when using OSCAR is
non-interactive mode. Typically, one has to poll monitoring
information from OSCAR, allowing one to know when the
cluster is ready to be configured.

The OSCAR CLI provides a hook for the customization
of this monitoring step. This hook is used for automatic test-
ing, polling monitoring information: the script polls moni-
toring information until all the compute nodes are installed
and rebooted. When compute nodes are back online, the
script exists and the testing driver continues its execution.

4.1.3 Compute Nodes Installation

In order to “simulate” compute nodes installation, we need
to boot up a virtual compute node and simulate a network
installation. For that, we use the capability of V2M to per-
form a virtual boot based on a bootable CDROM image. In
fact, we use the bootable CDROM that OSCAR generates
for systems that do not support PXE. Listing 3 presents a
profile example for such a compute node.

Listing 3. Example Node Profile
<?xml version="1.0"?>
<!DOCTYPE profile PUBLIC ""

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

"v3m_profile.dtd">
<profile>
<name>oscarnode1</name>
<type>Qemu</type>
<memory>128</memory>

<nic1>
<type>VLAN</type>
<mac>00:01:02:03:06:06</mac>

</nic1>
</profile>

4.1.4 Testing Parameters

The driver behavior is defined by input files used by the
CLI: the CLI is menu based and provide the capability to
define OSCAR parameters within files that are then used by
OSCAR [2]

A set of default values have been defined and are used
by the driver. However, it is possible to change these inputs
and therefore modify the tests.

The driver also create automatically configuration files
used to run the tests. These files are defined at the begin-
ning of the driver code, easing their modifications, but users
should not need to modify them since they are LSB [5] com-
pliant and therefore useable on all Linux distributions.

5 Implementation

Currently the testing driver is implemented in Perl, like
most of the OSCAR code. The current prototype has not
been integrated into the OSCAR code.

5.1 Pre-requirements

The first requirement is to have a system-level virtual-
ization solution installed, as well as V2M; V2M currently
supporting QEMU and Xen. The selected virtualization so-
lution and V2M has to be setup and should allow the cre-
ation of a virtual machine with one connection with the host
OS (also called TUN/TAP).

The current prototype also assumes that the image used
for the headnode is setup with few capabilities. The virtual
machine have to have the secure shell (ssh) tool installed
and allow connection as root with password, as well as sub-
version (used to get the OSCAR source). This is mandatory
in order to be able to drive the test from the host OS in a
non-interactive mode.

The current OSCAR implementation requires that users
setup /tftpboot on the headnode. This directory is setup

to provide a local binary packages repository for the tar-
geted Linux distribution as well as local repository for OS-
CAR binary packages. The user also have to setup such
repositories within the virtual headnode, the driver does not
automatically set it up since it is not part of the standard
OSCAR usage.

The current prototype also requires a specific network
configuration. First of all, the virtual headnode have to have
two network interface setup: one in order to access the pri-
vate network (virtual LAN) and one to access the public
network (which includes communication with the host OS).
Moreover, if the virtual headnode needs an internet access
(for instance if the virtual headnode is setup to use an on-
line binary package repository), the host OS has to provide
a network address translation translation to route packets
from/to the virtual cluster.

5.2 Virtual Cluster Installation Monitor-
ing

In order to know if compute nodes are installed and then
set them up, the virtual cluster status has to be monitored.
This monitoring mechanism is based on the OSCAR CLI
hook presented in Section 4.1.3.

The script polls monitoring information from OSCAR,
especially logs from rsyncd and systemimager (sys-
tem logs available in /var/logs/systemimager/).

5.3 Current Limitations

The current prototype is based on V2M which is de-
signed to abstract the system-level virtualization technology
used. Therefore, the virtual cluster is defined via XML files,
and depending on the virtualization solution the user wants
to use, V2M generates the associated configuration file and
then allows the management of the virtual cluster. However,
the current prototype has been validated only using QEMU
virtual machines, emulating the x86 architecture.

The current prototype has been tested using OSCAR on
Debian, further tests have to be done using others Linux
distributions.

6 Conclusion and Future Work

This document presents a tool for automatic testing of
the OSCAR suite. This tool allows developer to: (i) im-
prove developments, checking the code quality by testing,
(ii) speed up the release cycle, decreasing the testing/stabi-
lization phase.

The testing tool is based on the OSCAR CLI and take
benefit of the menu based approach: a preset configuration
has been created for testing and is used to automatically run

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

tests. Moreover, the menu based approach allows develop-
ers to easily modify inputs, creating new tests.

The automatic testing tool is today used daily in the
project OSCARonDebian.

The current implementation of the testing tool is based
on V2M an abstraction tool for system-level virtualization
which is designed to ease the transition from a virtualization
to another. However, the current implementation has been
validated only using QEMU, but future tests are planed us-
ing Xen.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM sym-
posium on Operating System s Principles (SOSP19), pages
164–177. ACM Press, 2003.

[2] W. Bland, T. Naughton, G. Vallée, and S. L. Scott. Design and
Implementation of a Menu Based OSCAR Command Line In-
terface. In Submitted to the 5th OSCAR Symposium, held with
21th International Symposium on High Performance Comput-
ing Systems and Applications (HPCS), 2007.

[3] F. L. Camargos and B. des Ligneris. Automated OSCAR Test-
ing with Linux-VServers. In Proceedings of the 19th Interna-
tional Symposium on High Performance Computing Systems
and Applications (HPCS), pages 347–352, Guelph, Ontario,
Canada, May 15-18 2005. IEEE Computer Society. Session
track: 3rd Annual OSCAR Symposium.

[4] R. P. Goldberg. Architecture of virtual machines. In Proceed-
ings of the workshop on virtual computer systems, pages 74–
112, Cambridge, Massachusetts, United States, 1973. ACM
Press.

[5] Linux Standard Base (LSB). http://www.linux-
foundation.org/en/LSB.

[6] OSCAR Documentation.
http://svn.oscar.openclustergroup.org/trac/oscar/.

[7] G. Vallée and S. L. Scott. Xen-oscar for cluster virtualiza-
tion. In Proceedings of ISPA Workshops: Workshop on Xen
in HPC Cluster and Grid Computing Environments (XHPC),
pages 487–498, 2006.

[8] Linux-vserver.org. http://linux-vserver.org/.

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

